Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 331–338 (2017).
Google Scholar
Burrill, D. R. & Silver, P. A. Making mobile reminiscences. Cell 140, 13–18 (2010).
Google Scholar
Church, G. M., Gao, Y. & Kosuri, S. Subsequent-generation digital info storage in DNA. Science 337, 1628 (2012).
Google Scholar
Sheth, R. U. & Wang, H. H. DNA-based reminiscence units for recording mobile occasions. Nat. Rev. Genet. 19, 718–732 (2018).
Google Scholar
Park, J. et al. Recording of elapsed time and temporal details about organic occasions utilizing Cas9. Cell 184, 1047–1063 (2021).
Google Scholar
Kaufman, M. H. Atlas of Mouse Growth (Educational, 1992).
Sulston, J. E. & Horvitz, H. R. Publish-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56, 110–156 (1977).
Google Scholar
Kaiser, S. et al. Transcriptional recapitulation and subversion of embryonic colon growth by mouse colon tumor fashions and human colon most cancers. Genome Biol. 8, R131 (2007).
Google Scholar
Bellacosa, A. Developmental illness and most cancers: organic and scientific overlaps. Am. J. Med. Genet. A 161a, 2788–2796 (2013).
Google Scholar
Visvader, J. E. Cells of origin in most cancers. Nature 469, 314–322 (2011).
Google Scholar
Sprouffske, Okay., Pepper, J. W. & Maley, C. C. Correct reconstruction of the temporal order of mutations in neoplastic development. Most cancers Prev. Res. (Phila.) 4, 1135–1144 (2011).
Google Scholar
Gerstung, M. et al. The evolutionary historical past of two,658 cancers. Nature 578, 122–128 (2020).
Google Scholar
Heiser, C. N. et al. Molecular cartography uncovers evolutionary and microenvironmental dynamics in sporadic colorectal tumors. Cell 186, 5620–5637 (2023).
Google Scholar
Chan, M. M. et al. Molecular recording of mammalian embryogenesis. Nature 570, 77–82 (2019).
Google Scholar
Bowling, S. et al. An engineered CRISPR-Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells. Cell 181, 1410–1422 (2020).
Google Scholar
Wagner, D. E. & Klein, A. M. Lineage tracing meets single-cell omics: alternatives and challenges. Nat. Rev. Genet. 21, 410–427 (2020).
Google Scholar
Shin, H. Y. et al. CRISPR/Cas9 concentrating on occasions trigger advanced deletions and insertions at 17 websites within the mouse genome. Nat. Commun. 8, 15464 (2017).
Google Scholar
Quinn, J. J. et al. Single-cell lineages reveal the charges, routes, and drivers of metastasis in most cancers xenografts. Science 371, eabc1944 (2021).
Google Scholar
Yang, D. et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell 185, 1905–1923 (2022).
Google Scholar
Perli, S. D., Cui, C. H. & Lu, T. Okay. Steady genetic recording with self-targeting CRISPR-Cas in human cells. Science 353, aag0511 (2016).
Google Scholar
Kalhor, R. et al. Developmental barcoding of entire mouse through homing CRISPR. Science 361, eaat9804 (2018).
Google Scholar
Replogle, J. M. et al. Combinatorial single-cell CRISPR screens by direct information RNA seize and focused sequencing. Nat. Biotechnol. 38, 954–961 (2020).
Google Scholar
Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866 (2016).
Google Scholar
Banerjee, A. et al. Succinate produced by intestinal microbes promotes specification of tuft cells to suppress ileal irritation. Gastroenterology 159, 2101–2115 (2020).
Google Scholar
Pijuan-Sala, B. et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 490–495 (2019).
Google Scholar
Saitou, M. & Yamaji, M. Primordial germ cells in mice. Chilly Spring Harb. Perspect. Biol. 4, a008375 (2012).
Google Scholar
Kobayashi, T. & Surani, M. A. On the origin of the human germline. Growth 145, e202201706 (2018).
Google Scholar
Tzouanacou, E. et al. Redefining the development of lineage segregations throughout mammalian embryogenesis by clonal evaluation. Dev. Cell 17, 365–376 (2009).
Google Scholar
Nowotschin, S. et al. The emergent panorama of the mouse intestine endoderm at single-cell decision. Nature 569, 361–367 (2019).
Google Scholar
Kwon, G. S., Viotti, M. & Hadjantonakis, A. Okay. The endoderm of the mouse embryo arises by dynamic widespread intercalation of embryonic and extraembryonic lineages. Dev. Cell 15, 509–520 (2008).
Google Scholar
Zernicka-Goetz, M., Morris, S. A. & Bruce, A. W. Making a agency determination: multifaceted regulation of cell destiny within the early mouse embryo. Nat. Rev. Genet. 10, 467–477 (2009).
Google Scholar
Ju, Y. S. et al. Somatic mutations reveal uneven mobile dynamics within the early human embryo. Nature 543, 714–718 (2017).
Google Scholar
Bryant, P. J. & Simpson, P. Intrinsic and extrinsic management of development in growing organs. Q. Rev. Biol. 59, 387–415 (1984).
Google Scholar
Stanger, B. Z. Organ measurement dedication and the boundaries of regulation. Cell Cycle 7, 318–324 (2008).
Google Scholar
van Neerven, S. M. & Vermeulen, L. Cell competitors in growth, homeostasis and most cancers. Nat. Rev. Mol. Cell Biol. 24, 221–236 (2023).
Google Scholar
Yzaguirre, A. D. & Speck, N. A. Insights into blood cell formation from hemogenic endothelium in lesser-known anatomic websites. Dev. Dyn. 245, 1011–1028 (2016).
Google Scholar
Qiu, J. et al. Embryonic hematopoiesis in vertebrate somites offers rise to definitive hematopoietic stem cells. J. Mol. Cell Biol. 8, 288–301 (2016).
Google Scholar
Nowakowski, R. S. et al. Inhabitants dynamics throughout cell proliferation and neuronogenesis within the growing murine neocortex. Outcomes Probl. Cell Differ. 39, 1–25 (2002).
Google Scholar
Zafar, H., Lin, C. & Bar-Joseph, Z. Single-cell lineage tracing by integrating CRISPR-Cas9 mutations with transcriptomic knowledge. Nat. Commun. 11, 3055 (2020).
Google Scholar
Tsai, Y. H. et al. LGR4 and LGR5 operate redundantly throughout human endoderm differentiation. Cell. Mol. Gastroenterol. Hepatol. 2, 648–662 (2016).
Google Scholar
Franklin, V. et al. Regionalisation of the endoderm progenitors and morphogenesis of the intestine portals of the mouse embryo. Mech. Dev. 125, 587–600 (2008).
Google Scholar
Barker, N. et al. Crypt stem cells because the cells-of-origin of intestinal most cancers. Nature 457, 608–611 (2009).
Google Scholar
Guiu, J. et al. Tracing the origin of grownup intestinal stem cells. Nature 570, 107–111 (2019).
Google Scholar
Egeblad, M., Nakasone, E. S. & Werb, Z. Tumors as organs: advanced tissues that interface with your complete organism. Dev. Cell 18, 884–901 (2010).
Google Scholar
Fearon, E. R., Hamilton, S. R. & Vogelstein, B. Clonal evaluation of human colorectal tumors. Science 238, 193–197 (1987).
Google Scholar
Williams, M. J. et al. Identification of impartial tumor evolution throughout most cancers varieties. Nat. Genet. 48, 238–244 (2016).
Google Scholar
Thorsen, A. S. et al. Heterogeneity in clone dynamics inside and adjoining to intestinal tumours recognized by Dre-mediated lineage tracing. Dis. Mannequin. Mech. 14, dmm046706 (2021).
Google Scholar
Chen, B. et al. Differential pre-malignant applications and microenvironment chart distinct paths to malignancy in human colorectal polyps. Cell 184, 6262–6280 (2021).
Google Scholar
Schepers, A. G. et al. Lineage tracing reveals Lgr5+ stem cell exercise in mouse intestinal adenomas. Science 337, 730–735 (2012).
Google Scholar
Fearon, E. R. & Vogelstein, B. A genetic mannequin for colorectal tumorigenesis. Cell 61, 759–767 (1990).
Google Scholar
Thirlwell, C. et al. Clonality evaluation and clonal ordering of particular person neoplastic crypts exhibits polyclonality of colorectal adenomas. Gastroenterology 138, 1441–1454 (2010).
Google Scholar
Thliveris, A. T. et al. Clonal construction of carcinogen-induced intestinal tumors in mice. Most cancers Prev. Res. (Phila.) 4, 916–923 (2011).
Google Scholar
Schenck, R. O. et al. The polyclonal path to malignant transformation in familial adenomatous polyposis. Most cancers Res. 83, 3497–3497 (2023).
Google Scholar
Cross, W. et al. The evolutionary panorama of colorectal tumorigenesis. Nat. Ecol. Evol. 2, 1661–1672 (2018).
Google Scholar
Greaves, M. & Maley, C. C. Clonal evolution in most cancers. Nature 481, 306–313 (2012).
Google Scholar
Coorens, T. H. H. et al. Inherent mosaicism and intensive mutation of human placentas. Nature 592, 80–85 (2021).
Google Scholar
Nishimura, T. et al. Evolutionary histories of breast most cancers and associated clones. Nature 620, 607–614 (2023).
Google Scholar
Hsu, S. H. et al. Multiclonal origin of polyps in Gardner syndrome. Science 221, 951–953 (1983).
Google Scholar
Becker, W. R. et al. Single-cell analyses outline a continuum of cell state and composition modifications within the malignant transformation of polyps to colorectal most cancers. Nat. Genet. 54, 985–995 (2022).
Google Scholar
Michor, F., Iwasa, Y. & Nowak, M. A. Dynamics of most cancers development. Nat. Rev. Most cancers 4, 197–205 (2004).
Google Scholar
Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics utilized to embryonic stem cells. Cell 161, 1187–1201 (2015).
Google Scholar
Kalhor, R., Mali, P. & Church, G. M. Quickly evolving homing CRISPR barcodes. Nat. Strategies 14, 195–200 (2017).
Google Scholar
Westphalen, C. B. et al. Lengthy-lived intestinal tuft cells function colon cancer-initiating cells. J. Clin. Make investments. 124, 1283–1295 (2014).
Google Scholar
Ludwig, L. S. et al. Lineage tracing in people enabled by mitochondrial mutations and single-cell genomics. Cell 176, 1325–1339 (2019).
Google Scholar
Nam, A. S. et al. Somatic mutations and cell id linked by genotyping of transcriptomes. Nature 571, 355–360 (2019).
Google Scholar
Vickovic, S. et al. Excessive-definition spatial transcriptomics for in situ tissue profiling. Nat. Strategies 16, 987–990 (2019).
Google Scholar
Wei, R. et al. Spatial charting of single-cell transcriptomes in tissues. Nat. Biotechnol. 40, 1190–1199 (2022).
Google Scholar
Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic knowledge. Cell Syst. 8, 281–291 (2019).
Google Scholar
Behjati, S. et al. Genome sequencing of regular cells reveals developmental lineages and mutational processes. Nature 513, 422–425 (2014).
Google Scholar
Jombart, T., Balloux, F. & Dray, S. adephylo: New instruments for investigating the phylogenetic sign in organic traits. Bioinformatics 26, 1907–1909 (2010).
Google Scholar
Deng, S. et al. A statistical methodology for quantifying progenitor cells reveals incipient cell destiny commitments. Nat. Strategies 21, 597–608 (2024).
Google Scholar
Wang, Z. & Jaenisch, R. At most three ES cells contribute to the somatic lineages of chimeric mice and of mice produced by ES-tetraploid complementation. Dev. Biol. 275, 192–201 (2004).
Google Scholar
Lawson, Okay. A., Meneses, J. J. & Pedersen, R. A. Clonal evaluation of epiblast destiny throughout germ layer formation within the mouse embryo. Growth 113, 891–911 (1991).
Google Scholar
Patel, S. H. et al. Lifelong multilineage contribution by embryonic-born blood progenitors. Nature 606, 747–753 (2022).
Google Scholar
van Dijk, D. et al. Recovering gene interactions from single-cell knowledge utilizing knowledge diffusion. Cell 174, 716–729 (2018).
Google Scholar
Setty, M. et al. Characterization of cell destiny possibilities in single-cell knowledge with Palantir. Nat. Biotechnol. 37, 451–460 (2019).
Google Scholar
Gulati, G. S. et al. Single-cell transcriptional variety is a trademark of developmental potential. Science 367, 405–411 (2020).
Google Scholar
Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).
Google Scholar
Fazilaty, H. et al. Tracing colonic embryonic transcriptional profiles and their reactivation upon intestinal harm. Cell Rep. 36, 109484 (2021).
Google Scholar
Cañellas-Socias, A. et al. Metastatic recurrence in colorectal most cancers arises from residual EMP1(+) cells. Nature 611, 603–613 (2022).
Google Scholar
Liu, Y. et al. Comparative molecular evaluation of gastrointestinal adenocarcinomas. Most cancers Cell 33, 721–735 (2018).
Google Scholar
Muyas, F. et al. De novo detection of somatic mutations in high-throughput single-cell profiling knowledge units. Nat. Biotechnol. 42, 758–767 (2024).
Dou, J. et al. Single-nucleotide variant calling in single-cell sequencing knowledge with Monopogen. Nat. Biotechnol. 42, 803–812 (2023).
Tukiainen, T. et al. Panorama of X chromosome inactivation throughout human tissues. Nature 550, 244–248 (2017).
Google Scholar
Wu, T. et al. clusterProfiler 4.0: a common enrichment device for decoding omics knowledge. Innovation (Camb.) 2, 100141 (2021).
Google Scholar